Chapter 6: SOLVING QUADRATIC EQUATIONS

A quadratic equation has the form $ax^2 + bx + c = 0$.

There are two methods that are commonly used for solving quadratic equations:

- * factorising
- * the quadratic formula

Note that not all quadratic equations can be solved by factorising. The quadratic formula can always be used however.

Method 1: Factorising

Make sure that the equation is rearranged so that the right hand side is 0. It usually makes it easier if the coefficient of x^2 is positive.

Example 1: Solve $x^2 - 3x + 2 = 0$

Factorise (x-1)(x-2) = 0

Either (x-1) = 0 or (x-2) = 0

So the solutions are x = 1 or x = 2

Note: The individual values x = 1 and x = 2 are called the **roots** of the equation.

Example 2: Solve $x^2 - 2x = 0$

Factorise: x(x-2) = 0

Either x = 0 or (x - 2) = 0So x = 0 or x = 2

Method 2: Using the formula

Recall that the roots of the quadratic equation $ax^2 + bx + c = 0$ are given by the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 3: Solve the equation $2x^2 - 5 = 7 - 3x$

Solution: First we rearrange so that the right hand side is 0. We get $2x^2 + 3x - 12 = 0$

We can then tell that a = 2, b = 3 and c = -12.

Substituting these into the quadratic formula gives:

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 2 \times (-12)}}{2 \times 2} = \frac{-3 \pm \sqrt{105}}{4}$$
 (this is the *surd form* for the solutions)

If we have a calculator, we can evaluate these roots to get: x = 1.81 or x = -3.31

If you need more help with the work in this chapter, there is an information booklet downloadable from this web site:

http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/web-quadraticequations.pdf

EXERCISE

1) Use factorisation to solve the following equations:

a)
$$x^2 + 3x + 2 = 0$$

b)
$$x^2 - 3x - 4 = 0$$

c)
$$x^2 = 15 - 2x$$

2) Find the roots of the following equations:

a)
$$x^2 + 3x = 0$$

b)
$$x^2 - 4x = 0$$

c)
$$4 - x^2 = 0$$

3) Solve the following equations either by factorising or by using the formula:

a)
$$6x^2 - 5x - 4 = 0$$

b)
$$8x^2 - 24x + 10 = 0$$

4) Use the formula to solve the following equations to 3 significant figures. Some of the equations can't be solved.

a)
$$x^2 + 7x + 9 = 0$$

b)
$$6 + 3x = 8x^2$$

c)
$$4x^2 - x - 7 = 0$$

d)
$$x^2 - 3x + 18 = 0$$

e)
$$3x^2 + 4x + 4 = 0$$

f)
$$3x^2 = 13x - 16$$